首页> 外文OA文献 >Velocity profiles in strongly turbulent Taylor-Couette flow
【2h】

Velocity profiles in strongly turbulent Taylor-Couette flow

机译:泰勒-库埃特湍流中的速度分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive the velocity profiles in strongly turbulent Taylor-Couette flow for the general case of independently rotating cylinders. The theory is based on the Navier-Stokes equations in the appropriate (cylinder) geometry. In particular, we derive the axial and the angular velocity profiles as functions of distance from the cylinder walls and find that both follow a logarithmic profile, with downwards-bending curvature corrections, which are more pronounced for the angular velocity profile as compared to the axial velocity profile, and which strongly increase with decreasing ratio η between inner and outer cylinder radius. In contrast, the azimuthal velocity does not follow a log-law. We then compare the angular and azimuthal velocity profiles with the recently measured profiles in the ultimate state of (very) large Taylor numbers. Though the qualitative trends are the same – down-bending for large wall distances and the (properly shifted and non-dimensionalized) angular velocity profile ω+(r) being closer to a log-law than the (properly shifted and non-dimensionalized) azimuthal velocity profile u + φ (r) – quantitativedeviations are found for large wall distances. We attribute these differences to the nonlinear dependence of the turbulent ω-diffusivity on the wall distance and partly also to the Taylor rolls and the axial dependence of the profiles, neither of which are considered in the theoretical approach. Assuming that the first origin is the most relevant one, we calculate from the experimental profile data how the turbulent ω-diffusivity depends on the wall distance and find a linear behavior for small wall distances as assumed and a saturation behavior for very large distances, reflecting the finite gap width: But in between the ω-diffusivity increases stronger than linearly, reflecting that more eddies can contribute to the turbulent transport (or they contribute more efficiently) as compared to the plane wall case.
机译:对于独立旋转的圆柱体的一般情况,我们推导出泰勒-库埃特湍流中的速度分布。该理论基于适当(圆柱)几何形状的Navier-Stokes方程。特别是,我们推导了轴向和角速度曲线作为距气缸壁距离的函数,并且发现两者均遵循对数曲线,并具有向下弯曲的曲率校正,与轴向方向相比,角速度曲线更明显速度分布,并且随着内,外圆柱半径之间的比率η的减小而急剧增加。相反,方位角速度不遵循对数律。然后,我们将角速度和方位角速度曲线与(非常)大泰勒数的最终状态下最近测量的曲线进行比较。尽管定性趋势是相同的–大壁距的弯曲是向下的,并且(适当位移和无量纲的)角速度分布ω+(r)比(适当位移和无量纲的)角速度更接近对数律。方位角速度分布u +φ(r)–对于较大的壁距发现定量偏差。我们将这些差异归因于湍流ω扩散对壁距的非线性依赖性,部分归因于泰勒辊和型材的轴向依赖性,这在理论方法中都没有考虑。假定第一个原点是最相关的,我们从实验剖面数据中计算出湍流ω扩散率如何取决于壁距,并假设假定的小壁距具有线性行为,而对于大距离则找到饱和行为,反映了有限的间隙宽度:但是,在两者之间,ω扩散率的增加比线性增加的强,这表明与平面壁情况相比,更多的涡流可以促进湍流的传输(或者它们可以更有效地发挥作用)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号